Bitcoin

Bitcoin

$117,295.67

BTC -2.48%

Ethereum

Ethereum

$3,053.22

ETH 0.89%

  • Login
  • Register
Metaverse Media Group
  • Home
  • Crypto
  • NFTs
  • Artificial Intelligence
  • More
    • Technology
    • Business
    • Newsletter
No Result
View All Result
  • Home
  • Crypto
  • NFTs
  • Artificial Intelligence
  • More
    • Technology
    • Business
    • Newsletter
No Result
View All Result
Metaverse Media Group

AI text-to-speech programs could “unlearn” how to imitate certain people

AI text-to-speech programs could “unlearn” how to imitate certain people

Techonolgy Reviewby Techonolgy Review
15 July 2025
image

A technique known as “machine unlearning” could teach AI models to forget specific voices—an important step in stopping the rise of audio deepfakes, where someone’s voice is copied to carry out fraud or scams.

Recent advances in artificial intelligence have revolutionized the quality of text-to-speech technology so that people can convincingly re-create a piece of text in any voice, complete with natural speaking patterns and intonations, instead of having to settle for a robotic voice reading it out word by word. “Anyone’s voice can be reproduced or copied with just a few seconds of their voice,” says Jong Hwan Ko, a professor at Sungkyunkwan University in Korea and the coauthor of a new paper that demonstrates one of the first applications of machine unlearning to speech generation.

Copied voices have been used in scams, disinformation, and harassment. Ko, who researches audio processing, and his collaborators wanted to prevent this kind of identity fraud. “People are starting to demand ways to opt out of the unknown generation of their voices without consent,” he says. 

AI companies generally keep a tight grip on their models to discourage misuse. For example, if you ask ChatGPT to give you someone’s phone number or instructions for doing something illegal, it will likely just tell you it cannot help. However, as many examples over time have shown, clever prompt engineering or model fine-tuning can sometimes get these models to say things they otherwise wouldn’t. The unwanted information may still be hiding somewhere inside the model so that it can be accessed with the right techniques. 

At present, companies tend to deal with this issue by applying guardrails; the idea is to check whether the prompts or the AI’s responses contain disallowed material. Machine unlearning instead asks whether an AI can be made to forget a piece of information that the company doesn’t want it to know. The technique takes a leaky model and the specific training data to be redacted and uses them to create a new model—essentially, a version of the original that never learned that piece of data. While machine unlearning has ties to older techniques in AI research, it’s only in the past couple of years that it’s been applied to large language models.

Jinju Kim, a master’s student at Sungkyunkwan University who worked on the paper with Ko and others, sees guardrails as fences around the bad data put in place to keep people away from it. “You can’t get through the fence, but some people will still try to go under the fence or over the fence,” says Kim. But unlearning, she says, attempts to remove the bad data altogether, so there is nothing behind the fence at all. 

The way current text-to-speech systems are designed complicates this a little more, though. These so-called “zero-shot” models use examples of people’s speech to learn to re-create any voice, including those not in the training set—with enough data, it can be a good mimic when supplied with even a small sample of someone’s voice. So “unlearning” means a model not only needs to “forget” voices it was trained on but also has to learn not to mimic specific voices it wasn’t trained on. All the while, it still needs to perform well for other voices. 

To demonstrate how to get those results, Kim taught a recreation of VoiceBox, a speech generation model from Meta, that when it was prompted to produce a text sample in one of the voices to be redacted, it should instead respond with a random voice. To make these voices realistic, the model “teaches” itself using random voices of its own creation. 

According to the team’s results, which are to be presented this week at the International Conference on Machine Learning, prompting the model to imitate a voice it has “unlearned” gives back a result that—according to state-of-the-art tools that measure voice similarity—mimics the forgotten voice more than 75% less effectively than the model did before. In practice, this makes the new voice unmistakably different. But the forgetfulness comes at a cost: The model is about 2.8% worse at mimicking permitted voices. While these percentages are a bit hard to interpret, the demo the researchers released online offers very convincing results, both for how well redacted speakers are forgotten and how well the rest are remembered. A sample from the demo is given below. 

A voice sample of a speaker to be forgotten by the model.
The generated text-to-speech audio from the original model using the above as a prompt.
The generated text-to-speech audio using the same prompt, but now from the model where the speaker was forgotten.

Ko says the unlearning process can take “several days,” depending on how many speakers the researchers want the model to forget. Their method also requires an audio clip about five minutes long for each speaker whose voice is to be forgotten.

In machine unlearning, pieces of data are often replaced with randomness so that they can’t be reverse-engineered back to the original. In this paper, the randomness for the forgotten speakers is very high—a sign, the authors claim, that they are truly forgotten by the model. 

 “I have seen people optimizing for randomness in other contexts,” says Vaidehi Patil, a PhD student at the University of North Carolina at Chapel Hill who researches machine unlearning. “This is one of the first works I’ve seen for speech.” Patil is organizing a machine unlearning workshop affiliated with the conference, and the voice unlearning research will also be presented there. 

She points out that unlearning itself involves inherent trade-offs between efficiency and forgetfulness because the process can take time, and can degrade the usability of the final model. “There’s no free lunch. You have to compromise something,” she says.

Machine unlearning may still be at too early a stage for, say, Meta to introduce Ko and Kim’s methods into VoiceBox. But there is likely to be industry interest. Patil is researching unlearning for Google DeepMind this summer, and while Meta did not respond with a comment, it has hesitated for a long time to release VoiceBox to the wider public because it is so vulnerable to misuse. 

The voice unlearning team seems optimistic that its work could someday get good enough for real-life deployment. “In real applications, we would need faster and more scalable solutions,” says Ko. “We are trying to find those.”

Read the full article on TechnologyReview.com
in Technology
Reading Time: 5 mins read
0
0
21
VIEWS
Share on TwitterShare on Facebook

Subscribe to our newsletter

For the latest news & monthly prize giveaways
Join Now

Subscribe to our newsletter

For the latest news & monthly prize giveaways
Join Now
ADVERTISEMENT

Related Posts

Google’s generative video model Veo 3 has a subtitles problem
Technology

Google’s generative video model Veo 3 has a subtitles problem

2 hours ago
21
AI’s giants want to take over the classroom
Technology

AI’s giants want to take over the classroom

8 hours ago
21
This tool strips away anti-AI protections from digital art
Technology

This tool strips away anti-AI protections from digital art

5 days ago
21

Comments

Please login to join discussion
ADVERTISEMENT

Latest News

  • All
  • Crypto
  • NFTs
  • Technology
  • Business
Bitcoin Retreats as Inflation Climbs
Crypto

Bitcoin Retreats as Inflation Climbs

Bitcoin.com News
by Bitcoin.com News
21 minutes ago
20
Trump Demands Fed Slash Rates by 3%—Says Powell Should Step Down
Crypto

Trump Demands Fed Slash Rates by 3%—Says Powell Should Step Down

Bitcoin.com News
by Bitcoin.com News
41 minutes ago
21
BTC Rally Reverses as Tariff Threats and Rate Jitters Shake Market
Crypto

BTC Rally Reverses as Tariff Threats and Rate Jitters Shake Market

Bitcoin.com News
by Bitcoin.com News
2 hours ago
21
Alephium’s Danube Upgrade Goes Live: A Major Leap for Web3 on Proof of Work
Crypto

Alephium’s Danube Upgrade Goes Live: A Major Leap for Web3 on Proof of Work

Bitcoin.com News
by Bitcoin.com News
2 hours ago
21
Google’s generative video model Veo 3 has a subtitles problem
Technology

Google’s generative video model Veo 3 has a subtitles problem

Techonolgy Review
by Techonolgy Review
2 hours ago
21
Bitcoin Price Watch: Bulls on Hold as Bearish Engulfing Shakes Daily Chart
Crypto

Bitcoin Price Watch: Bulls on Hold as Bearish Engulfing Shakes Daily Chart

Bitcoin.com News
by Bitcoin.com News
3 hours ago
20
Load More
Next Post
Top Bitcoin & Crypto Sportsbooks for the 2025 MLB All-Star Game

Top Bitcoin & Crypto Sportsbooks for the 2025 MLB All-Star Game

ADVERTISEMENT

Follow Us

Categories

  • Crypto
  • NFTs
  • AI
  • Technology
  • Business
  • Crypto
  • NFTs
  • AI
  • Technology
  • Business
Subscribe to our Newsletter

© 2022 Metaverse Media Group – The Metaverse Mecca

Privacy and Cookie Policy | Sitemap

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Home
  • Crypto
  • NFTs
  • Artificial Intelligence
  • More
    • Technology
    • Business
    • Newsletter
Bitcoin

Bitcoin

$117,295.67

BTC -2.48%

Ethereum

Ethereum

$3,053.22

ETH 0.89%

  • Login
  • Sign Up
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.

Subscribe to our newsletter

Get the latest news & win monthly prizes

Subscribe to our newsletter

For the Latest News and Monthly Prize Giveaways

Join Now
Join Now